平方根の場合には、ある数を2乗してできる数(平方数)に対して、逆に、2乗してその数になるようなもとの数、というのが定義でした。累乗根も同様で、同じ考え方を2以外の数にまで一般化して拡張したものです。
こんなふうに累乗の側と同様、いくらでも作れます。この累乗根の書き方および読み方ですが、数値aのn乗根は、以下のように、「根号」(ルート記号)の前に何乗するとその数になるかの回数を付加して表記し、これを「n乗根a」と読みます。
いくつか実際の例でみてみましょう。
n乗根のうち2乗根を特に平方根といい、3乗根を立方根といいます。一般化した累乗根を決めた後からみると、平方根は累乗根の中のひとつ、ということになります。また、平方根だけは使用が特に多いので、乗数を省いて書いてよいことになっていて、それで根号の前に2がありません。